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ABSTRACT: To identify U.S. lead exposure risk hotspots, we
expanded upon geospatial statistical methods from a published
Michigan case study. The evaluation of identified hotspots using
five lead indices, based on housing age and sociodemographic data,
showed moderate-to-substantial agreement with state-identified
higher-risk locations from nine public health department reports
(45−78%) and with hotspots of children’s blood lead data from
Michigan and Ohio (e.g., Cohen’s kappa scores of 0.49−0.63).
Applying geospatial cluster analysis and 80th−100th percentile
methods to the lead indices, the number of U.S. census tracts
ranged from ∼8% (intersection of indices) to ∼41% (combination
of indices). Analyses of the number of children <6 years old living
in those census tracts revealed the states (e.g., Illinois, Michigan,
New Jersey, New York, Ohio, Pennsylvania, Massachusetts, California, Texas) and counties with highest potential lead exposure risk.
Results support use of available lead indices as surrogates to identify locations in the absence of consistent, complete blood lead level
(BLL) data across the United States. Ground-truthing with local knowledge, additional BLL data, and environmental data is needed
to improve identification and analysis of lead exposure and BLL hotspots for interventions. While the science evolves, these
screening results can inform “deeper dive” analyses for targeting lead actions.
KEYWORDS: children’s health, environmental health, metals, indices, mapping, biomonitoring

■ INTRODUCTION
While average blood lead levels in the U.S. have declined,
millions of children and adults are still exposed to various
sources of lead.1−3 Although there are known sources of lead
exposure (e.g., paint in older homes, drinking water from lead
pipes, soil, and consumer products),4 it is difficult to identify
communities that may have disproportionate exposures
because of limitations in children’s blood lead surveillance
data and gaps in environmental and other exposure data.5

There is no known level of lead exposure to be without risk,6−8

and many communities are disproportionately impacted.9,10

Identifying and addressing remaining lead exposure risk
hotspots are priorities in the United States. The Federal Lead
Action Plan10 and the U.S. Environmental Protection Agency
(EPA) Lead Strategy (e.g., Goal 2, “Identify Communities with
High Lead Exposures and Improve Their Health Outcomes”)9

highlight the need for lead mapping as part of whole-of-
government efforts to address high exposure risk locations and
disparities. Data mapping can inform screening and prioritiza-
tion efforts to guide interventions and “deeper dive” analyses
(such as enhancing children’s blood lead level (BLL)
surveillance data analyses and lead source apportionment
analyses). These analyses can assist in efforts around primary
prevention; lead-based paint mitigation; lead remediation,
enforcement, education, and outreach.11 Federal agencies are

collaborating to identify geographic locations and populations
at risk for lead exposure so that they can be addressed
proactively. Examples include targeting HUD remediation
grants, EPA environmental cleanup actions, and CDC primary
prevention and enhanced blood lead testing programs for
children.5

The EPA, U.S. Department of Housing and Urban
Development (HUD), Centers for Disease Control and
Prevention (CDC), and other organizations are applying
geospatial statistical methods with available data (blood lead
surveillance data, lead indices, and environmental data) to
identify locations that are disproportionately at risk. However,
there are remaining gaps and challenges such as cross-agency
data collection and integration.5 The interagency lead mapping
state-of-the-science paper5 presented a data integration
roadmap to identify places for public health action:
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“For national scale, one could use lead indices and evaluate
identified geographic locations by available BLL data and
local knowledge...While the science is evolving to compare
available lead indices and models against each other and
evaluate or ground-truth them against states’-measured
surveillance BLL data...an analyst or decision-maker may
want to use them collectively to identify high-risk locations
to cast a wider net or to use their intersecting locations for a
more focused list...”.
This paper provides a next step in the research to identify

U.S. lead exposure hotspots using existing data.

■ MATERIALS AND METHODS
The general approach taken for this analysis consists of the
following four steps:

1. Statistically evaluated hotspots identified with lead
indices against children’s BLL surveillance data:

(a) from Michigan (MI) and Ohio (OH), using the BLL
data and statistical methods described in Xue et al.12 and
Stanek et al.,13 respectively, and an expanded set of
national lead indices;

(b) from matching hotspots identified using lead indices
with community hotspots identified in 9 state health
department public reports (listed in Zartarian et al.5)
and quantifying the percent; a match is defined here as a
community with at least one census tract identified by
the lead indices in our analyses;

2. Compared existing national indices against each other
and against available BLL surveillance data using
sensitivity, specificity, and Cohen’s kappa score to
determine which indices are the statistically strongest
predictors of hotspots for the national-scale analysis;

3. Produced census tract-level maps for the United States
that visualize the intersection and collective combination
of hotspots based on the two methods discussed in Xue
et al.,12 top 20 (i.e., 80th−100th) percentiles and Getis-
Ord Gi*14 geospatial cluster hotspots analysis methods;

4. Conducted national-scale analyses to identify states and
counties with the highest potential lead exposure risk,
based on the considered indices and the number of
children younger than six years old in the identified 2010
census tracts (n = 73,086 census tracts containing at
least one child <6 years old in the 50 states).

In this paper, hotspots refer to geographic locations with a
higher prevalence of children’s lead exposures, based on the
percentage of higher BLLs among children and/or identi-
fication by lead exposure indices using two statistical methods:
top 20 (80th−100th) percentile and Getis-Ord Gi* geospatial
cluster hotspot analysis (ESRI ArcGIS Desktop v.10.8.2 and
Pro 3.1 Hot Spot Analysis tool15). The top 20 (80th−100th)
percentile method uses a direct percentile calculation
conducted with traditional statistical software (i.e., Microsoft
Excel). The Getis-Ord Gi* geospatial cluster hotspot analysis
method uses the ArcGIS Hot Spot tool15 which is a spatial
interpolation function that calculates the Getis-Ord Gi*
statistic for the exposure value of each census tract within
the context of neighboring ones. To be identified as a
geographic location with a higher prevalence of children’s lead
exposures, a given census tract will have higher BLL values
and/or high lead exposure index values that are also adjacent
to other census tracts with higher BLL values and/or high lead

exposure index values. More detail on the application of this
method can be found in Xue et al.12

In our analysis, “higher BLLs” (referred to previously as
elevated BLLs or EBLLs) are defined as greater than or equal
to CDC’s previous blood lead reference value of 5 μg/dL.16
We elected to use CDC’s 2012 blood lead reference value
(BLRV)16 of 5 μg/dL for this analysis to remain consistent
with the 2010 census data, MI and OH BLLs acquired through
EPA’s data use agreements, and the public state health
department reports used in this analysis (all of which contain
data predating 2020). The BLRV was updated to 3.5 μg/dL in
2021.17

The five lead exposure indices and models (referred to
collectively as lead indices) used in this national-scale analysis
are based on publicly available data on older housing (prior to
1980) and sociodemographic variables. We included the
following indices: (1) the EPA EJSCREEN Lead Paint EJ
Index (“EJSCREEN Index”);18 (2) Schultz et al., 2017-based
BLL model (“Schultz Model”) developed by the EPA Office of
Research and Development (ORD);19 (3) U.S. Department of
Housing and Urban Development Deteriorated Paint Index
(HUD DPI);20 (4) the Vox U.S. Lead Risk Exposure score
(“Vox”);21 and Random Forest (RF) Regression EBLL
Prediction Model (“RF Model”). The first four were
summarized by Zartarian et al.5 Two versions of the new
Random Forest (RF) Regression EBLL Prediction Model
developed by EPA ORD22,23 were also included: RF Model
version 1 (v1) and RF Model version 2 (v2). “RF Model v1”
refers to version 1 of the regression model built using Ohio
2007−2011 BLL data and the 2013 OH DH report model.24 It
includes the following five variables: percent of homes built
prior to 1940, percent of homes built prior to 1950, percent of
families whose income-to-poverty ratio was greater than 2,
percent of population with either high school or higher
education, and percent of non-Hispanic African Americans in
each census tract. Demographic data originate from the
American Community Survey 2013−2017 5-year summary
file.25 “RF Model v2” refers to a modified version that includes
the following variables: percent of homes built prior to 1940,
percent of homes built prior to 1950, and percent of families
whose income-to-poverty ratio was greater than 2. Note that
RF Model v2, which is a reduced form of v1, is included in a
subset of tables and figures in the Results and Discussion, as it
was developed after the initial analyses were conducted. Please
see the Supporting Information for more details.

We used BLL data from Michigan (∼1.9 million BLL data
points; 2006−2016 among children <6 years old) and Ohio
(∼2.3 million BLL data points; 2005−2018 among children <6
years old) acquired through data use agreements between the
state health departments and the EPA/ORD. More detail on
these data can be found in Xue et al. (MI data)12 and Stanek et
al. (OH data).13

For steps 1 and 2, indices were compared together and with
children’s BLL data from MI and OH and state-identified
locations in public health department reports. The identified
lead exposure indices hotspots were evaluated by applying
Cohen’s kappa26 agreement statistic (<0.4 = low; >0.4−0.6 =
moderate; >0.6−0.8 = substantial; >0.8−0.99 = near perfect
agreement) and sensitivity and specificity analyses. Note that
some reports refer to these locations as “high risk
communities” while others refer to them differently, e.g.,
“selected community”. In the context of this application,
sensitivity is the percentage of true positives (i.e., the rate at
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which a model or index correctly predicts a hotspot for BLLs)
and specificity is the percentage of true negatives (i.e., the rate
at which a model or index correctly predicts a nonhotspot for
BLLs).

To compare hotspots identified by the lead indices with
“high risk locations” identified by state health departments
based on their BLL surveillance data, we assessed the summary
of available data and reports listed in Zartarian et al. figure B
(left panel) and table D.5 Note that 9 of 32 public reports
identified hotspots at the community/city/town level; the rest
reported them at other geographic scales (i.e., state, county,
parish, health jurisdiction, zip code). The 9 states used for
evaluation were: Connecticut (city/town), Maine (city/town),
Massachusetts (city/town, census tracts), Michigan (city/
town), New Hampshire (city/town, census tracts), New Jersey
(municipality), Ohio (city/town, county), Pennsylvania
(municipality), and Rhode Island (city). As Table D in
Zartarian et al.5 shows, states used different criteria, geographic
scales, time periods, and blood lead reference values for
identifying higher risk locations.

After comparing and evaluating the indices using the
statistical methods (i.e., top 20th percentile and Getis-Ord
Gi* geospatial clustering) described in Xue et al.,12 the
intersection and collective combinations were mapped with
ESRI ArcGIS Desktop version 10.8.2. This data intersection
and combination was executed in ArcGIS by performing spatial
data joining using census tract geographic identification
numbers (GEOIDs).

We summarized the results into tables by U.S. states and
counties, ranking them by total number of children <6 years
old (per 2010 Census27) in identified census tracts based on
the lead exposure indices results. Corresponding county and
state ranking tables are displayed by index or model
identification (1 = identified as a lead exposure risk hotspot
by index or model; 0 = not identified by index or model as a
lead exposure risk hotspot; Total = total number of indices and
models that identified the respective location). For Tables
S1−S8 identifying states and counties with the highest
potential lead exposure risk (as defined by total number of
children <6 years old identified by the indices based on
housing age and sociodemographics), we featured the Schultz
Model, Vox, and RF Model v1 based on the evaluation results.
Our intent of identifying states and counties is to inform
further tailored analyses for lead mitigation efforts.

■ RESULTS AND DISCUSSION
National-Scale Lead Exposure Hotspot Maps Based

on 5 Indices and Models. Figure 1 shows national analyses
of high lead exposure locations with five available indices/
models, using the Getis-Ord Gi* geospatial cluster method and
the top 20 percentile (80th−100th) method. The top panels
show the intersection of the five indices, and the bottom shows
the combination. Figures S-1 and S-2 show the individual
hotspot maps for the five indices using the two statistical
methods. The maps look different due to the nuances in
underlying science and data as discussed in Zartarian et al.,5

i.e., national-scale lead indices constructed with different

Figure 1. National analyses of the highest potential lead (Pb) exposure risk locations identified using 5 available indices and models with the Getis-
Ord Gi* geospatial cluster and top 20 percentile (80th−100th) methods.
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methods, variables, and geographic scales. For example,
different years of housing age (% pre-1940 vs pre-1960 vs
pre-1980 homes) or different sociodemographic variables (e.g.,
% people of color vs % non-Hispanic African American) can
produce different looking maps with differences in hotspots
identified, depending on the location and population.

Figure 2 shows the intersection and combination of the two
statistical methods on the same maps, along with the number
of U.S. census tracts identified. Considering the intersection of
the five indices, the number of census tracts is 562 (0.8%)
based on Getis-Ord Gi* identified only, 1869 (2.6%) based on
top 20 percentiles identified only, and 3430 (4.7%) identified
by both analyses (for a total of ∼8%). Considering the
combination of the five indices, there is much more coverage
over the entire United States, with the number of census tracts
as 2107 (2.9%) based on Getis-Ord Gi* identified only, 9234
(12.6%) based on top 20 percentiles identified only, and

18 867 (25.8%) identified by both analyses (for a total of
∼41%).
States and Counties with the Most Children Living in

Hotspot Census Tracts Based on Lead Exposure Indices.
Utilizing five indices and the two geospatial statistical methods
(Getis-Ord Gi* and top 20 percentiles), states and counties
with the most children <6 years old residing in hotspot census
tracts include:

• IL, MI, NJ, NY, OH, PA (identified by 5 indices); MA,
CA, TX (identified by 4 indices) (Getis-Ord Gi*
geospatial cluster method) as shown in Table 1 along
with other results (i.e., states identified by 1, 2, or 3
indices);

• IL, MI, NJ, NY, OH, PA, TX (identified by 5 indices);
CA (identified by 4 indices) (top 20, 80th−100th,
percentile method) as shown in Table S-1 along with
other results (i.e., states identified by 1, 2, or 3 indices);

Figure 2. National scale convergence analyses of the highest potential lead (Pb) exposure risk locations identified using 5 available indices and
models with the Getis-Ord Gi* geospatial cluster and top 20 percentile (80th−100th) methods.

Table 1. States with the Highest Potential Lead (Pb) Exposure Risk as Defined by Total Number of Children (<6 years old)
Living in 2010 Census Tracts Identified by Each Respective Pb Exposure Index and Model Using the Getis-Ord Gi* Geospatial
Cluster Method

state EJSCREEN Index Schultz Model HUD Index Random Forest Model v1 Vox totala

Illinois 1 1 1 1 1 5
Michigan 1 1 1 1 1 5
New Jersey 1 1 1 1 1 5
New York 1 1 1 1 1 5
Ohio 1 1 1 1 1 5
Pennsylvania 1 1 1 1 1 5
Massachusetts 0 1 1 1 1 4
California 1 1 0 1 1 4
Indiana 0 0 1 1 1 3
Texas 1 1 1 0 1 4
Connecticut 0 0 1 0 0 1
Florida 1 1 0 0 0 2
Maryland 1 0 0 0 0 1
Wisconsin 0 0 0 1 0 1

aTotal = total number of indices and/or models that identified the respective location. 1 = identified by index or model. 0 = not identified by index
or model.
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• Cook County, IL, Wayne County, MI, Bronx, Kings,
New York, Queens counties, NY, Philadelphia County,
PA (identified by 5 indices); Essex County, NJ, Los
Angeles County, CA, Harris County, TX, Milwaukee
County, WI (identified by 4 indices); others shown in
Table 2 (Getis-Ord Gi* geospatial cluster method);

• Cook County, IL, Wayne County, MI, Bronx, Kings,
Queens counties, NY, Philadelphia County, PA, Los
Angeles County, CA, Harris County, TX, Milwaukee
County, WI (identified by 5 indices); Essex County, NJ,
New York County, NY, Dallas County, TX (identified
by 4 indices); others shown in Table S-2 (top 20, 80th−
100th, percentile method).

Details of states and counties identified based on the
number of children in lead indices hotspot census tracts are

shown in Tables S-3, S-4, and S-5 and S-6, S-7, and S-8,
respectively. Of the three featured indices (RF Model v1,
Schultz Model, and Vox), the Vox score yielded the highest
number of children living in identified lead exposure risk
hotspots in New York state (627 045; Table S-4) and in Los
Angeles County (279 113) (Table S-7).
Evaluation of Lead Indices and Hotspots Identified.

Statistical evaluation of hotspots identified using five lead
indices showed good agreement with OH and MI BLL data
hotspots. Comparing the indices vs BLLs, Cohen’s kappa
scores demonstrate moderate to substantial statistical agree-
ment (0.49−0.63) between hotspots (Table 3). Generally, the
RF Model v1 and v2 had the strongest agreement results (0.63
and 0.54/0.52 for MI and OH, respectively). Tables S-9 and S-
10 further illustrate strong statistical agreement with sensitivity

Table 2. Counties with the Highest Potential Lead (Pb) Exposure Risk as Defined by Total Number of Children (<6 years old)
Living in Census 2010 Tracts Identified by Each Respective Pb Exposure Index and Model Using the Getis-Ord Gi* Geospatial
Cluster Method

state county EJSCREEN Index Schultz Model HUD Index Random Forest Model v1 Vox totala

Illinois Cook County 1 1 1 1 1 5
Michigan Wayne County 1 1 1 1 1 5
New York Bronx County 1 1 1 1 1 5
New York Kings County 1 1 1 1 1 5
New York New York County 1 1 1 1 1 5
New York Queens County 1 1 1 1 1 5
Pennsylvania Philadelphia County 1 1 1 1 1 5
New Jersey Essex County 0 1 1 1 1 4
California Los Angeles County 1 1 0 1 1 4
Maryland Baltimore City 0 1 0 1 1 3
Massachusetts Suffolk County 0 0 1 1 1 3
Ohio Cuyahoga County 0 1 0 1 1 3
Pennsylvania Allegheny County 0 0 1 1 1 3
Texas Harris County 1 1 1 0 1 4
Wisconsin Milwaukee County 0 1 1 1 1 4
Arizona Maricopa County 1 1 0 0 1 3
California Alameda County 1 0 0 1 1 3
Florida Miami-Dade County 1 1 0 0 1 3
Indiana Marion County 0 1 1 0 0 2
New Jersey Hudson County 0 0 1 1 0 2
New York Erie County 0 0 1 1 0 2
Connecticut New Haven County 0 0 1 0 0 1
Massachusetts Middlesex County 0 0 1 0 1 2
New York Westchester County 0 0 1 0 0 1
Ohio Hamilton County 0 1 0 1 0 2
Rhode Island Providence County 0 0 0 1 0 1
Tennessee Shelby County 0 1 0 0 0 1
Texas Dallas County 1 1 0 0 0 2
California Fresno County 1 0 0 0 0 1
California Kern County 1 0 0 0 0 1
California Orange County 1 0 0 0 0 1
California Riverside County 1 0 0 0 0 1
California San Bernardino County 1 0 0 0 0 1
California San Diego County 1 0 0 0 0 1
California San Francisco County 0 0 0 0 1 1
District of Columbia District of Columbia 0 1 0 0 0 1
Missouri St. Louis city 0 0 0 1 0 1
New Jersey Middlesex County 0 0 1 0 0 1
New York Suffolk County 0 0 1 0 0 1
Texas Bexar County 1 0 0 0 0 1

aTotal = total number of indices and/or models that identified the respective location. 1 = identified by index or model. 0 = not identified by index
or model.
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and specificity analyses: sensitivity of 91−96% for three of the
indices (RF Model v1, Schultz Model, and Vox − Getis-Ord
Gi*); specificity of 78−94% for all indices (top 20 percentiles
and Getis-Ord Gi*). Compared against each other, the lead
indices demonstrate low to near-perfect statistical agreement
(e.g., kappa scores of 0.37−0.87 as shown in Table S-11).

The hotspots identified with the five considered lead indices
match well with community hotspots identified in the available
state health department reports (Tables 4 and 5). For the U.S.,
the results were 45% (EJSCREEN Index), 62% (Schultz
Model), 78% (HUD DPI), 58% (RF Model v1), 72% (Vox),
and 61% (RF Model v2). For OH and MI, the results were
74% (EJSCREEN Index), 95% (Schultz Model), 89% (HUD
DPI), 89% (RF Model v1), 100% (Vox), and 95% (RF Model
v2). Since the convergence analyses of RF Model v1, Schultz
Model, and Vox show better statistical agreement with each
other (Cohen’s kappa of ∼0.7) than with EJSCREEN Index
and HUD DPI (kappa ranged from 0.47 to 0.59 with the Getis-
Ord Gi* method) for the national scale analysis (Table S-11),
we focused on these three indices for identifying states and
counties with the highest potential lead exposure risk (as
mentioned in Materials and Methods).

■ DISCUSSION
Strengths. This paper presents an innovative, state-of-the-

science geospatial data analysis and screening approach to help
identify and address U.S. lead exposure hotspot locations.
Current limitations and gaps in environmental, sociodemo-
graphic, and blood lead data make it challenging to develop a
single U.S. blood lead map or blood lead prediction model
accounting for all sources of lead exposure. Thus, our
methodology is to utilize a convergence and collective set of
currently available information, considering uncertainties and
different data sets and approaches. The results are displayed
visually with U.S. hotspot map figures showing the intersection
and combination of five available lead indices and correspond-
ing tables with locations they identified. The accompanying
statistical analyses in the tables presented show the strength of
the indices used and verification of locations they identified.

Our results support the use of available lead indices in the
absence of consistent, complete BLL surveillance data across

the United States. This analysis utilizes peer-reviewed,
published lead exposure hotspot analysis methods in EPA’s
Michigan lead analysis paper12 and builds off an interagency
(EPA/HUD/CDC) lead mapping state-of-the-science paper.5

Statistical evaluation of the available lead indices was
conducted in multiple ways: with MI and OH children’s
BLL surveillance data and locations identified from 9 state
health department reports.

We used census tract level analyses to identify, on a national
scale, the states and counties with the highest potential lead
exposure risk based on the number of children living in lead
exposure hotspots. These results can inform further tailored
analyses for lead mitigation efforts. For example, these
screening analysis results could include identifying the most
disproportionately impacted communities that might be
eligible for federal or state lead mitigation programs;
determining where resources should be focused to reduce
lead-based paint exposures, replace lead service lines, and
address lead-contaminated soils and other sources; assessing
additional data needs and priority locations for collecting more
environmental and biomonitoring data to identify lead
exposure hotspots and their drivers. The analysis presented
in this paper to advance the science for identifying high lead
exposure locations supports U.S. efforts including the Federal
Lead Action Plan,10 EPA Lead Strategy,9 Biden-Harris Lead
Pipe and Paint Action Plan,28 and Biden-Harris “Get the Lead
Out” Partnership.29

This science can guide other lead hotspot identification and
verification efforts and inform lead reduction actions through
collaborations with state and local health departments.30 Not
only are these national-scale maps and results informative to
help target U.S. efforts, but the approaches of this paper could
also inform lead discussions and efforts in other countries. For
example, a report to G7 ministers31 on the outcomes of the
November 2022 workshop entitled, “Lead as a Major Threat
for Human Health and the Environment: An Integrated
Approach Strengthening Cooperation toward Solutions,”
discussed options for future work to reduce sources of lead
and minimize lead exposure in low- and middle-income
countries (LMICs) that included: “helping LMICs conduct
initial diagnostic assessments about the prevalence of lead
poisoning and identification and ranking of sources of lead
exposure.” In the U.S. and other countries, while data
collection and hotspot mapping science evolves to help
pinpoint the highest risk locations, short-term national and
community actions can be informed by existing best practices
and toolkits (e.g., EPA’s Local Lead Action Plan Guide;32

United Nations Environment Programme, Toolkit for
establishing laws to eliminate lead paint33).
Limitations. There are a number of limitations of this

analysis and opportunities to enhance data and methods to
identify lead exposure risk hotspots. The lead indices used in
this analysis include 2010 census data, geographic identifiers,
and boundaries. The 2020 census data, geographic identifiers,
and boundaries cannot be fully incorporated at this time due to
incomplete census data or index incompatibility. As mentioned
in the Materials and Methods, this analysis uses 5 μg/dL rather
than the current CDC blood lead reference value of 3.5 μg/dL
to be consistent with the underlying data in the lead indices
and the data used to evaluate them (public reports and BLL
data from MI and OH). Although this may be considered a
limitation of the analysis, Xue et al.12 found that, when
comparing MI census tract hotspots using 5 μg/dL vs

Table 3. Statistical Agreement Analyses (Cohen’s Kappa) of
the Highest Potential Lead (Pb) Exposure Risk Hotspots
Identified: Michigan and Ohio Blood Lead Levels (BLLs) vs
Pb Exposure Indices and Modelsa

Michigan BLLs Ohio BLLs

N

Getis-
Ord
Gi*

top 20
percentiles N

Getis-
Ord
Gi*

top 20
percentiles

kappa kappa
EJSCREEN
Index

2401 0.56 0.53 2850 0.59 0.50

HUD DPI 2401 0.50 0.43 2850 0.49 0.42
Random Forest
Model
version 1

2401 0.63 0.52 2850 0.54 0.51

Schultz Model 2401 0.49 0.49 2850 0.46 0.51
Vox 2401 0.50 0.55 2850 0.44 0.51
Random Forest
Model
version 2

2401 0.63 0.52 2850 0.52 0.51

aCohen’s kappa agreement statistic: <0.4 low; >0.4−0.6 moderate;
>0.6−0.8 substantial; >0.8−0.99 near perfect agreement.
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Table 4. State-Identified Locations in 9 Public Health Department Reports (Based on Blood Lead Levels ≥5 μg/dL) Across
the United States That Were Also Identified by the Getis-Ord Gi* Analysis of Lead Exposure Indices and Modelsa

state health department community
hotspotb

EJSCREEN
Index

Schultz
Model

HUD
Index

Random Forest Model
v1 Vox

community index-model identification
count

Akron, OH 1 1 1 1 1 5
Atlantic City, NJ 1 1 1 1 1 5
Bridgeport, CT 1 1 1 1 1 5
Brockton, MA 1 1 1 1 1 5
Canton, OH 1 1 1 1 1 5
Central Falls, RI 1 1 1 1 1 5
Cincinnati, OH 1 1 1 1 1 5
Cleveland, OH 1 1 1 1 1 5
Columbus, OH 1 1 1 1 1 5
Dayton, OH 1 1 1 1 1 5
Detroit, MI 1 1 1 1 1 5
East Cleveland, OH 1 1 1 1 1 5
East Orange, NJ 1 1 1 1 1 5
Flint, MI 1 1 1 1 1 5
Hamtramck, MI 1 1 1 1 1 5
Harrisburg, PA 1 1 1 1 1 5
Hartford, CT 1 1 1 1 1 5
Highland Park, MI 1 1 1 1 1 5
Irvington, NJ 1 1 1 1 1 5
Lancaster, PA 1 1 1 1 1 5
Meriden, CT 1 1 1 1 1 5
Muskegon, MI 1 1 1 1 1 5
New Haven, CT 1 1 1 1 1 5
Paterson, NJ 1 1 1 1 1 5
Plainfield, NJ 1 1 1 1 1 5
Reading, PA 1 1 1 1 1 5
Toledo, OH 1 1 1 1 1 5
Trenton, NJ 1 1 1 1 1 5
Waterbury, CT 1 1 1 1 1 5
York, PA 1 1 1 1 1 5
Youngstown, OH 1 1 1 1 1 5
Jackson, MI 0 1 1 1 1 4
Lewiston, ME 0 1 1 1 1 4
New Bedford, MA 0 1 1 1 1 4
Portland, ME 0 1 1 1 1 4
Providence, RI 0 1 1 1 1 4
Scranton, PA 0 1 1 1 1 4
Springfield, OH 0 1 1 1 1 4
Woonsocket, RI 0 1 1 1 1 4
Grand Rapids, MI 0 1 1 1 1 4
Bangor, ME 0 1 1 0 1 3
Adams, MA 0 0 1 0 1 2
Auburn, ME 0 0 1 0 1 2
Gloucester, MA 0 0 1 0 1 2
Newark, NJ 0 1 1 0 0 2
Newport, RI 0 0 1 0 1 2
North Adams, MA 0 0 1 0 1 2
Total 31 43 54 40 50
Percentc 45 62 78 58 72

a1 = identified by index or model; 0 = not identified by index or model. bState health department reports and their respective community hotspots
are sourced from Table D in Zartarian, V.; Poulakos, A.; Garrison, V. H.; Spalt, N.; Tornero-Velez, R.; Xue, J.; Egan, K.; Courtney, J. Lead Data
Mapping to Prioritize US Locations for Whole-of-Government Exposure Prevention Efforts: State of the Science, Federal Collaborations, and
Remaining Challenges. Am. J. Public Health. 2022, 112 (S7), S658−S669. DOI: 10.2105/AJPH.2022.307051 (ref 5). cPercent refers to the
percentage of community hotspots identified by each respective index or model. Percentages were calculated by taking the values in the “Total” row
and dividing them by 69 (i.e., the total number of state health department community hotspots in the aforementioned 9 public health department
reports). 57 community hotspots were identified by at least one index/model. 47 of the 69 are shown in the table as these are the communities
identified by two or more indices/models (this was also done due to table formatting and spacing limitations).
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3.5 μg/dL, a Cohen’s kappa value of ∼0.94 was calculated,
demonstrating near perfect statistical agreement. Furthermore,
the use of 3.5 μg/dL as a blood lead reference value has yet to
be adopted by all state health departments, which presently
limits and complicates its use in a national scale analysis.

This research focuses on children because of available blood
lead data, but reducing lead exposure is also important for
adults.1 We note that some researchers have questioned the
interpretability of agreement statistics such as Cohen’s
kappa.34,35 Only nine state health department reports
identified community-level locations; this, along with most of
them not reporting at the census tract level, limited the extent
to which we could evaluate the indices across the country.
Ideally, more blood lead data would be available for ground-
truthing of index-identified hotspots.

The indices utilized are moderate to substantial predictors of
higher BLLs and do not include environmental data and
sources that could likely improve the identification of lead
exposure hotspots (e.g., prevalence of lead service lines;
drinking water and soil lead concentration data in residences,
schools, and daycare centers; other data discussed in Zartarian
et al.5). We emphasize that, because the indices and models
used in this paper are based on publicly available housing age
and sociodemographic data, the lead exposure risk hotspots
identified in this national-scale analysis are most relevant to old
housing-related sources of lead (e.g., lead-based paint,
residential soil and dust, and lead in drinking water in old
homes with lead pipes). Identification of high-risk locations
and their underlying sources may change as environmental

data, and ideally also food and consumer products data, are
incorporated into the indices and finer scales are considered.
Understanding which lead sources and pathways are
contributing the most to BLLs within lead exposure hotspots
identified is important for prioritizing exposure reduction
actions and resources. However, source apportionment can
vary by location and scenarios,36,37 and quantification is
challenging without an integrated database of multimedia
environmental lead and BLL data.5

Table 1 results, based on Pb indices constructed with old
housing and sociodemographic data from the census, may
potentially be skewed toward states with higher population
densities because of significantly more old housing stock (i.e.,
in northeastern and north-central U.S. in comparison to the
south and other parts of the U.S). Rural counties may appear
less than urban areas in this analysis because of smaller
populations and potentially lower quantity of census data from
those counties used in the indices. Prior research with
Michigan data showed that the HUD DPI, EJSCREEN
Index, and Schultz Model predominantly identify urban hot
spots, particularly with the geospatial cluster analysis (Xue et
al.12). This U.S. analysis paper and the ones it builds upon
focus on potential lead exposure risk from old housing-related
sources, based on population level (census tract, county, and
state results) not at the individual or household levels.

As a screening approach to identify locations with an
increased potential of high lead exposure or higher BLLs, this
national-scale analysis cannot identify sources at particular
addresses or risk at an individual level. Our methodology

Table 5. State-Identified Locations in Michigan and Ohio Public Health Department Reports (Based on Blood Lead Levels ≥5
μg/dL) That Were Also Identified by the Getis-Ord Gi* Analysis of Lead Exposure Indices and Modelsa

Pb exposure indices and models

state health dept. community
hotspotb

EJSCREEN
Index

Schultz
Model

HUD
Index

Random Forest Model
v1 Vox

community index-model identification
count

Akron, OH 1 1 1 1 1 5
Canton, OH 1 1 1 1 1 5
Cincinnati, OH 1 1 1 1 1 5
Cleveland, OH 1 1 1 1 1 5
Columbus, OH 1 1 1 1 1 5
Dayton, OH 1 1 1 1 1 5
Detroit, MI 1 1 1 1 1 5
East Cleveland, OH 1 1 1 1 1 5
Flint, MI 1 1 1 1 1 5
Hamtramck, MI 1 1 1 1 1 5
Highland Park, MI 1 1 1 1 1 5
Muskegon, MI 1 1 1 1 1 5
Toledo, OH 1 1 1 1 1 5
Youngstown, OH 1 1 1 1 1 5
Jackson, MI 0 1 1 1 1 4
Springfield, OH 0 1 1 1 1 4
Grand Rapids, MI 0 1 1 1 1 4
Lansing, MI 0 1 0 0 1 2
Adrian, MI 0 0 0 0 1 1
Total 14 18 17 17 19
Percentc 74 95 89 89 100

a1 = identified by index or model; 0 = not identified by index or model. bState health department reports and their respective community hotspots
are sourced from Table D in Zartarian, V.; Poulakos, A.; Garrison, V. H.; Spalt, N.; Tornero-Velez, R.; Xue, J.; Egan, K.; Courtney, J. Lead Data
Mapping to Prioritize US Locations for Whole-of-Government Exposure Prevention Efforts: State of the Science, Federal Collaborations, and
Remaining Challenges. Am. J. Public Health. 2022, 112 (S7), S658−S669. DOI: 10.2105/AJPH.2022.307051 (ref 5). cPercent refers to the
percentage of community hotspots identified by each respective index or model. Percentages were calculated by taking the values in the “Total” row
and dividing them by 19 (i.e., the total number of MI and OH state health department community hotspots).
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focuses on the census tract scale for reasons discussed in Xue
et al..12 To target resources for local-scale source and risk
mitigation, further investigation of hotspots identified should
be conducted to identify individuals who may have been
exposed.30 More verification or “ground-truthing” of lead
hotspots is needed using more blood lead surveillance data, as
it becomes available, and information from local partners with
on-the-ground knowledge of their communities.30 We also
note that counties with high population densities were
identified by most or all of the indices used, which may raise
the question of whether population density alone may be
sufficient in determining high lead exposure risk. As described
in the U.S. EPA Integrated Science Assessment for Lead,4 old
housing�a key environmental variable included in all lead
exposure indices considered in this paper�is a widely known
and acknowledged indicator of potential lead exposures. This
reinforces its use over simple population-based metrics.
Furthermore, lead exposure risk has been observed to
disproportionately impact specific communities.9,10 From a
social and environmental justice perspective, population
density data alone cannot account for this.
Research Needs. More research is needed to understand

the differences in high potential lead exposure risk locations
identified and the choice of the most appropriate index or
indices for different geographic locations. In addition, while
some indices statistically agree more with higher BLL hotspots
for MI and OH (as shown in Table 3), the requisite BLL data
to be able to preferentially select one over another are not
available across the entire U.S. Thus, our national approach is
to intersect or combine indices (as shown in Figure 2) to
narrow or broaden the set of locations for lead-related efforts,
depending on the intended purpose and available resources.

Future research can also include enhancing and expanding
the current lead indices to address the various limitations as
more data become available. Research is underway to enhance
the Random Forest Model by incorporating environmental
data in EPA/OECA’s POST (EPA Office of Enforcement and
Compliance Assurance Pb Occurrence and Source Tool
described in Zartarian et al.5). For example, analyses have
been conducted to determine the relative impact of lead
service line (LSL) prevalence vs old housing in two cities
where LSL data are available22 and to geospatially analyze
linkages between commercial sources of lead and childhood
BLLs.38 CDC is currently developing a web-based Lead
Exposure Risk Index (LERI) that will incorporate multiple
demographic, geographic, and environmental risk factors at the
census tract level. This tool is intended for use by health
agencies and providers to identify high-risk areas where
children should be tested for lead and to target lead-reduction
interventions.39 In the next two years, HUD plans to geocode
the historic database of HUD grants’ production of lead-safe
housing units and update the Deteriorated Paint Index in 2024
after the 2023 American Housing Survey, Healthy Homes
supplement is fielded.

Due to the current data limitations discussed in Zartarian et
al.,5 development of lead indices as surrogates in the absence of
complete and accurate population-level BLL surveillance data
requires a whole-of-government approach. EPA, HUD, and
CDC continue to collaborate and evolve the research and
address data gaps. Various groups are working to collect more
representative BLL surveillance data and detailed environ-
mental lead sources and measurement data that could help
evaluate and improve future indices.30 Collaborative inter-

agency case studies applying the EPA Lead Strategy Goal 2
“blueprint”9,30 to identify and prioritize potential places for
action are further developing and applying these methods to
determine drivers of lead exposure hotspots. While science in
this area evolves, these U.S. screening results identifying states,
counties, and census tracts with potential high lead exposure
risk can inform further efforts to target lead actions (such as
those described in Breysse et al.11 and Zartarian et al.5) for
public health protection.

The overarching public health questions this research is
addressing to help prioritize actions are as follows: Where are
exposure risk hotspots and what sources are driving them? The
lead-focused methodologies in this paper and previous research
it expands upon, using available blood lead surveillance data
and surrogate exposure indices, could potentially be applied to
other chemicals (and countries) depending on available data.
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